- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Asoori_Sriram, Harinarayan (1)
-
Bader, David A (1)
-
Both, Gert-Jan (1)
-
Chinthalapudi, Srijith (1)
-
Du, Zhihui (1)
-
Ellis-Joyce, Justin (1)
-
Turaga, Srinivas C (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding information flow in the brain can be facilitated by arranging neurons in the fly connectome to form a maximally “feedforward” structure. This task is naturally formulated as the Minimum Feedback Arc Set (MFAS)—a well-known NP-hard problem, especially for large-scale graphs. To address this, we propose the Rocket-Crane algorithm, an efficient two-phase method for solving MFAS. In the first phase, we develop a continuous-space optimization method that rapidly generates excellent solutions. In the second phase, we refine these solutions through advanced exploration techniques that integrate randomized and heuristic strategies to effectively escape local minima. Extensive experiments demonstrate that Rocket-Crane outperforms state-of-the-art methods in terms of solution quality, scalability, and computational efficiency. On the primary benchmark—the fly connectom—our method achieved a feedforward arc set with a total forward weight of 35,459,266 (about 85$$\%$$ ), the highest among all competing methods. The algorithm is open-source and available on GitHub.more » « lessFree, publicly-accessible full text available December 1, 2026
An official website of the United States government
